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ABSTRACT

A fast modeling method based on multiple-forescattering single-backscattering (MFSB) approximation, i.e. the
De Wolf approximation for calculating re
ected (or backscattered) wave �elds in 3-D heterogeneous acoustic
media is introduced. The method is much faster than full wave �nite di�erence or �nite element methods. The
formulation is especially suitable for the con�guration of surface re
ection surveying. When discontinuities in
a medium are not very sharp or parameter perturbations of heterogeneities are not very strong, reverberations
between heterogeneities or resonance scattering can be neglected. However, for large volume heterogeneous media
or long propagation distances the accumulated e�ect of multiple forward scattering becomes very important for
both forward modeling and inverse problems. In such cases, the Born approximation is not valid while the
De Wolf approximation can be applied. After renormalizing the multiple scattering series of the Lipmann-
Schwinger equation, a MFSB approximation for acoustic waves is derived and a fast dual-domain computation
scheme is presented, in which the multi-screen one-way wave propagator is used. Finally numerical examples are
given to demonstrate the validity of the method.

Keywords: acoustic wave, backscattering, De Wolf approximation, modeling, thin-slab.

1 INTRODUCTION

Fast modeling methods and algorithms in complex heterogeneous media, especially for 3-D media, are crucial
to the development of imaging and inversion methods, interpretations and applications of seismic methods for
complex structures. Finite di�erence and �nite element methods, which in principle can model wave propagation
in arbitrarily heterogeneous media, are time consuming, even formidable in the case of large 3-D elastic wave
problems. High-frequency asymptotic methods, such as ray methods can be used for the case of smoothly
varying media (�Cerven�y,[2] 1981; �Cerven�y and Klime�s,[3] 1984; Chapman,[4] 1985). However, all the frequency-
dependent and wave related phenomena in complex media can not be modeled by ray methods. Born scattering
formulation (Gubernatis et al.,[9] 1977; Wu and Aki,[14] 1985), ray-Born (Beydoun and Mendes,[1] 1989; Coates and
Chapman,[5] 1990), or generalized Born scattering (Coates and Chapman,[6] 1991) can model small volume complex
heterogeneities in smooth background media. But they are not capable of modeling large volume or long distance
propagation problems in complex media. It is necessary to develop intermediate modeling methods functioning
between the full wave equation methods and the high-frequency asymptotic methods. For the modeling of
backscattered �elds of surface re
ection surveying, reverberations between heterogeneities or resonance scattering
can often be neglected. However, accumulated e�ects of forward scattering (or forescattering), such as the phase
shift and wavefront distortion, focusing/defocusing, and multi-pathing, usually can not be neglected. In fact, for
large volume heterogeneous media or long distance propagation, multiple forescattering is very important for both
forward modeling and inverse problems. In this study we develop a new method based on multiple-forescattering
single-backscattering (MFSB) approximation, i.e. the De Wolf approximation (De Wolf,[7, 8] 1971, 1985) for the
modeling of re
ected wave �elds in the con�guration of surface re
ection surveying. A dual-domain formulation
is derived for fast implementation of the method. The method retains the major features of full wave equation
methods for most cases of practical applications, but has a much higher computation speed and less memory
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requirement relative to full wave methods. Numerical examples are given to demonstrate the validity of the
method. They demonstrate that the incidence angle dependence of re
ected wave amplitudes by this numerical
method matches well with theoretical predictions, including critical re
ections, up to 70 degrees. Therefore, the
wide-angle algorithm of the method could be used to model wide-angle re
ected (backscattered) or transmitted
(forescattered) acoustic waves. Approximations to this method, such as the screen approximation for the case of
large scale heterogeneities, for further reducing the computation time, have been discussed by Wu et al.[16] (1995)
and Xie and Wu[17] (1995). Detailed comparisons between di�erent versions of the method and their accuracy
analyses are left for future publications.

2 DE WOLF APPROXIMATION

2.1 Lipmann-Schwinger equation

The constant density scalar wave equation is

�
r

2 +
!2

c2(x)

�
p(x) = 0 : (1)

Let c0(x) be the velocity of the background medium, then we have

�
r

2 + k2
�
p(x) = �k2F (x)p(x) ; (2)

where k = !=c0 is the background wavenumber and

F (x) =
c20

c2(x)
� 1 =

s2(x)� s20
s20

= "(x) (3)

is the perturbation function (dimensionless force), in which s = 1=c is the slowness of the medium. Let

p(x) = p0(x) + P (x) ; (4)

then we have

p(x) = p0(x) + k2
Z
v

d3x0g(x;x0)F (x0)p(x0) ; (5)

where g(x;x0) is the Green's function in the background medium. This is the Lipmann-Schwinger equation.

2.2 Renormalization of scattering series and the De Wolf approximation

The Lipmann-Schwinger equation (5) has a formal solution of multiple scattering Born series. The widely used
Born approximation is the leading term of the series. The Born approximation is only valid when the hetero-
geneities are weak and the propagation distance is short. After renormalization of the multiple scattering series,
De Wolf[7, 8] (1971, 1985) derived a MFSB approximation given by

p(x) = pf (x) + k2
Z
v

d3x0gf (x;x0)F (x0)pf (x0) ; (6)

where pf and gf are the renormalized, multiple forescattered �eld and Green's function, respectively. In this paper,
pf and gf will be calculated using the phase-screen propagator. Note that in the De Wolf approximation, both
the total exact �eld and the free space Green's function are replaced by the renormalized, multiple forescattering
approximations, and is superior to the approximations made by Wu and Huang[15] (1992) in which only the total
exact �eld is approximated by pf but the free space Green's function is left intact. This MFSB approximation is
valid whenever the backscattered �eld is much smaller than the forescattered �eld.
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Figure 1: Illustration of a thin-slab.
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2.3 Implementation of the MFSB synthetics by a dual-domain technique

The scattered �eld at a receiving point (x�T ; z
�) can be calculated using equation (6) as

P (x�

T ; z
�) = k2

Z
v

d3xgf (x�

T ; z
�;x)F (x)pf (x) ; (7)

where x�

T is the horizontal position in the receiver plane at depth z�. Equation (7) can be numerically implemented
using the phase-screen propagator (Thomson and Chapman,[12] 1983; Martin and Flatt�e,[10] 1988; Sto�a et al.,[11]

1990; Wu and Huang,[15] 1992; Wu,[13] 1994). To speed up the calculation of backscattered �elds, the local Born
approximation can be used within a thin-slab (cf. Figure 1). This means that the forescattered �eld pf can be
kept unperturbed and gf can be replaced by a constant medium Green's function within the slab. Assume z0 and
z1 as the slab entrance (top) and exit (bottom) respectively (cf. Figure 1), and Fourier-transform equation (7)
with respect to xT , resulting in

P (KT ; z
�) = k2

Z z1

z0
dz

ZZ
d2xT g

0(KT ; z
�;x)F (x)pf (x) ; (8)

where

g0(KT ; z
�;xT ; z) =

i

2

ei
jz

�

�zje�iKT �xT (9)

with


 =
q
k2 �K2

T : (10)

Substituting equation (9) into (8) yields

P (KT ; z
�) =

i

2

k2
Z z1

z0
dzei
jz

�

�zj

ZZ
d2xT e

�iKT �xT [F (xT ; z)p
f (xT ; z)] : (11)

Note that the two dimensional inner integral is a 2-D Fourier transform. Therefore, the dual-domain technique
can be used to implement equation (11).

2.4 The case of acoustic media

For a linear isotropic acoustic medium, the wave equation in frequency domain is

r �
1

�
rp+

!2

�
p = 0 ; (12)
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where p is the pressure �eld, � and � are the density and bulk modulus of the medium, respectively.
Assuming �0 and �0 as the parameters of the background medium, in the case of thin-slab and a constant

medium, equation (12) can be written as

1

�0
r

2p+
!2

�0
p = �[!2(

1

�
�

1

�0
)p+r � (

1

�
�

1

�0
)rp] ; (13)

or
(r2 + k2)p(x) = �k2F (x)p(x) ; (14)

which has the same form as the case of scalar media except

F (x) = "�(x) +
1

k2
r � "�r ; (15)

which is an operator instead of a scalar function, with

"�(x) =
�0

�(x)
� 1 ; (16)

"�(x) =
�0

�(x)
� 1 : (17)

If � keeps constant (� = �0), then "� = c20=c
2
� 1 = ", going back to the scalar medium case.

From equation (11), the dual-domain expression for scattered pressure �eld at the receiving depth z� for
acoustic media can be written explicitly as

P (KT ; z
�) =

i

2

k2
Z z1

z0
dzei
jz

�

�zj

�Z
d2xT e

�iKT �xT ["�(xT ; z)p
f (xT ; z)]

+
i

k
k̂ �

Z
d2xT e

�iKT �xT ["�(xT ; z)rpf (xT ; z)]

�
; (18)

with

k̂ =
1

k
(KT ; kz) ; (19)

where kz = �
 for forescattering and backscattering, respectively. The incident �eld pf (xT ; z) and its gradient
rpf (xT ; z) at depth z can be calculated from the �eld at the slab entrance z0, p0(x0

T ; z
0), as follows:

pf (x) = pf (xT ; z) =
1

4�2

ZZ
d2K0

T p
0(K0

T )e
i
0(z�z0)eiK

0

T
�xT (20)

and

rpf (x) =
ik

4�2

ZZ
d2K0

T k̂
0p0(K0

T )e
i
0(z�z0)eiK

0

T
�xT ; (21)

where

k̂0 =
1

k
(K0

T ; 

0) : (22)

When the receiving level is at the bottom of the thin-slab (forescattering), z� = z1; while z� = z0 is for the
backscattered �eld at the top of the thin-slab. The total transmitted �led at the slab bottom can be calculated
as the sum of the forescattered �eld and the primary �eld.

Note that equation (18) for calculating scattered �elds does not involve any approximation except the dual-
domain implementation (or split step algorithm). When the scales of heterogeneities in the medium are larger
than the dominant wavelength, the method can be further approximated by using a screen scattering approxi-
mation which involves small-angle approximation to wave-medium interactions. The screen approximation can
substantially reduce the computation time of the method. We will discuss its accuracy and limitations in future
publications. In this paper we will concentrated on the wide-angle version of the method.



Wu and Huang Re
ected Wave Modeling 5

Figure 2: The schematic illustration for a
2-D layered model.
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2.5 Implementation procedure

The procedure for calculating backscattered �eld in acoustic media can be summarized as follows. The simpli�-
cation for the case of scalar media is straightforward.

1. Fourier transform the incident �eld at the entrance of each thin-slab into wavenumber domain.

2. Free propagation in wavenumber domain and calculate the primary �eld and its gradient within the slab.

3. At each depth within the slab, inverse FT the primary �eld and its gradient into space domain, and then
interact with the medium perturbations: calculate the backscattered �eld.

4. FT the backscattered �eld into wavenumber domain and derive its divergence. Sum up scattered �elds
by bulk modulus and density, and multiply it with a weighting factor i=(2
). Then free propagate to the
entrance of the slab. The total backscattered �eld by the thin-slab can be propagated to the surface using
the multi-screen propagator.

5. Calculate the forescattered �eld at the slab exit and add it to the primary �eld to form the total �eld as
the incident �eld at the entrance of the next thin-slab.

6. Continue the procedure iteratively.

7. Sum up all the backscattered waves to form the total scattered �eld at the surface.

3 NUMERICAL EXAMPLES

3.1 Re
ection coe�cients

We used a layered model de�ned on a 2048�300 rectangular grid (cf. Figure 2) to verify the ability of the proposed
method for calculating re
ected waves. In the model, the grid spacing in the horizontal direction is 8m and that
in the vertical directions is 5m. The plane interface between the two layers is located at the depth of 500m. A
pressure source with the �rst derivative of a Gaussian time history, a dominant frequency 20Hz and an amplitude
1.0 was introduced at the center of the upper border of the model. The velocity and density of the upper layer
are 2000m/s and 1.0g/cm3, respectively. Re
ection coe�cients at the interface were calculated for the di�erent
velocity and density perturbations in the lower layer using our proposed method. The frequency range used in
the calculation is from 14.6Hz to 19.5Hz with 11 frequency components. We calculated re
ection coe�cients for
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Figure 3: Comparison between theoretical and simulated re
ection coe�cients of a high-velocity `half-space' shown in
Figure 2 when the velocity and density perturbations of the lower `half-space' are (a) 10% and (b) 20%. Dashed lines
represent the theoretical re
ection coe�cients and the solid curves, the simulated results.

0 20 40 60 80
Incidence Angle (Degree)

-0.6

-0.4

-0.2

0

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

(a)

0 20 40 60 80
Incidence Angle (Degree)

-0.6

-0.4

-0.2

0

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

(b)

Figure 4: Comparison between theoretical and simulated re
ection coe�cients of a low-velocity `half-space' shown in
Figure 2 when the velocity and density perturbations of the lower `half-space' are (a) -10% and (b) -20%. Dashed lines
represent the theoretical re
ection coe�cients and the solid curves, the simulated results.
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each frequency component and took an average over the 11 frequencies (cf. Figure 3). Figure 3 (a) is the results
for 10% of velocity and density perturbations in the lower layer and Figure 3 (b) is for 20%. In both �gures,
the dashed lines are theoretically predicted re
ection coe�cients of plane wave incidence and the solid curves
are calculated results. These curves demonstrate that the calculated re
ection coe�cients are in good agreement
with theoretical ones when the incidence angles are smaller than the critical angles. When the incidence angles
are near and beyond the critical angles, the numerical results deviate from the theoretical curves. This may be
due to several reasons such as the curved wavefronts of waves from the point source, the wavenumber �ltering in
the process of forward propagation which reduces the amplitudes of large-angle scattered waves, and the e�ect of
�nite layer thickness. The amplitudes of the calculated re
ection coe�cients decrease when the incidence angles
are larger than approximately 70� due to the wavenumber �ltering during the calculation of forward propagation.

When the velocity and density perturbations of the lower layer are -10% and -20%, the corresponding results
are given in Figure 4 (a) and (b), respectively. For Figure 4 (a), the frequency range is the same as above while
the frequency range is from 4.88Hz to 9.77Hz with 11 frequency components for Figure 4 b. We see from these
�gures that calculated re
ection coe�cients agree well with the theoretical results when the incidence angles are
smaller than approximately 70�. For larger incidence angles, the amplitudes of re
ection coe�cients decrease
because of the wavenumber �ltering.

3.2 Synthetic seismograms of re
ected waves

The model shown in Figure 2 was used for the simulations of re
ected waves from the two plane interfaces in the
model. Both the grid spacings in the horizontal and vertical directions are 5m. The velocity and density of the
upper layer are 4000m/s and 1.0g/cm3, respectively. For the �rst simulation, the velocity of the lower layer is
4400m/s and the density is kept the same as the upper layer. For the second simulation, the density of the lower
layer is set to be 1.1g/cm3 while the velocity is reduced so that the bulk modulus of this layer is kept the same
as that in the �rst simulation. Therefore, the velocity of the lower layer becomes 4195.2m/s. The pressure source
introduced at the center of the upper border of the model is a Ricker's time history with a dominant frequency
10Hz and an amplitude 1.0. Receivers were located at the grid points at the surface. Computations were made
for 1024 time steps using a vertical space interval of 20m for the phase-screen propagator. The time interval is
0.004s. Figure 5 (a) and (b) depict respectively the central part of seismograms (i.e. re
ected pressure �elds)
recorded at the receivers for both simulations. We see from Figure 5 (b) that the re
ected waves from the lower
border of the model arrive at a later time than that in Figure 5 (a) and that the amplitudes of re
ected waves
are larger than those in Figure 5 (a), as expected.

Next, we present an example of simulation of re
ected waves from a cylindrical heterogeneous body located at
the center of a homogeneous model de�ned on a 2048�400 grid (cf. Figure 6). The grid spacings are the same as
above. The diameter of the cylindrical body is 1000m. The velocity and density of the background medium are
4000m/s and 1.0g/cm3, respectively. The velocity and density of the cylindrical heterogeneous body are the same
as those of the lower layer of the above model. Other parameters are the same as above. The same computations
as above were made for 1024 time steps and the corresponding seismograms are given in Figure 7. Comparing
Figure 7 (a) and (b), we can see the di�erences between them similar to those between Figure 5 (a) and (b).

4 CONCLUSIONS AND DISCUSSION

We have developed a fast dual-domain method for modeling re
ected waves in heterogeneous acoustic media
based on the De Wolf approximation, i.e. the multiple-forescattering single-backscattering approximation. It can
handle wide-angle scattering. The computation speed of the method would be much faster than classical full wave
�nite di�erence approaches because of the one-way propagation features and the usage of FFT in our method.
Therefore, the method is very suitable for large 3-D modeling, migration/inversion problems.

Numerical examples showed that the relection coe�cients of a plane interface derived from numerical simula-
tions by our method match the theoretical curves well up to critical angles. The proposed method can even model
the critical and post-critical re
ections with the correct phase and travel times, although the amplitudes may
deviate from the ideal plane wave re
ections. In the numerical examples presented in this paper, the magnitude
of simulated re
ection coe�cients fall o� from the theoretical curves beyond about 70�. This may be further
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Figure 5: Seismograms recorded during the simulations of re
ected waves from a layered model (cf. Figure 2). (a) is for
the case where the densities of the upper and lower layers are the same while their velocities are di�erent. (b) is for the
case where the density and velocity of the lower layer are both di�erent from those of the upper layer. The same scale was
used in (a) and (b).

Figure 6: The schematic illustration for a
2-D model with a cylindrical heterogeneous
body at the center of the model.
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Figure 7: Seismograms recorded during the simulations of re
ected waves from the model shown in Figure 6. (a) is for the
case where the densities of the cylindrical heterogeneous body and background medium are the same while their velocities
are di�erent. (b) is for the case where the density and velocity of the cylindrical heterogeneous body are both di�erent
from those of the background medium. The same scale was used in (a) and (b).
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improved by optimizing the wavenumber �ltering in our algorithm and decreasing the marching step length in
z-direction. From the derivation of the method based on a perturbation approach and a dual-domain implemen-
tation, we understand that the method has an accurate implementation for the horizontal Helmholtz operator,
but retains as a �rst order �nite di�erence algorithm in z-direction. Therefore, the errors of the algorithm de-
pend on the step length in z-direction, heterogeneity strength and the spectral properties of the heterogeneities.
Detailed study of the method for 3-D cases and comparisons with �nite di�erence methods including accuracy
and computation speed will be given in the future publications.
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